Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations
نویسندگان
چکیده
منابع مشابه
Lorentz-Shimogaki and Boyd theorems for weighted Lorentz spaces
We prove the Lorentz-Shimogaki and Boyd theorems for the spaces Λu(w). As a consequence, we give the complete characterization of the strong boundedness of H on these spaces in terms of some geometric conditions on the weights u and w, whenever p > 1. For these values of p, we also give the complete solution of the weak-type boundedness of the Hardy-Littlewood operator on Λu(w).
متن کاملPointwise Convergence of Ergodic Averages in Orlicz Spaces
converge a.e. for all f in L log log(L) but fail to have a finite limit for an f ∈ L. In fact, we show that for each Orlicz space properly contained in L, 1 ≤ q < ∞, there is a sequence along which the ergodic averages converge for functions in the Orlicz space, but diverge for all f ∈ L . This extends the work of K. Reinhold, who, building on the work of A. Bellow, constructed a sequence for w...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملResearch Article Nonlinear Mean Ergodic Theorems for Semigroups inHilbert Spaces
Let K be a nonempty subset of a Hilbert space , where K is not necessarily closed and convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if (S1) T(t) is a mapping from K into itself for t ≥ 0, (S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0, (S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded subinterval of [0,∞). Let Γ be a se...
متن کاملIsomorphism Theorems for Semigroups of Order-preserving Partial Transformations
The full order-preserving transformation semigroup, the orderpreserving partial transformation semigroup and the order-preserving one-to-one partial transformation semigroup on a poset X are denoted by OT (X), OP (X) and OI(X), respectively. It is well-known that for any posets X and Y , OT (X) ∼= OT (Y ) if and only if X and Y are either order-isomorphic or order-anti-isomorphic. The purpose o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1995
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-114-3-227-236